Grade 3 Unit 2 Family Resource
Unit Name: Developing a Conceptual Understanding of Place Value
What's my child learning in Unit 2?

- Students will recognize area as attribute of plane figures and understand concepts of area measurement.
- Students will understand that a square with a side length of 1 unit, called a "unit square" is said to have "one square unit" of area and recognize that a plane figure which can be covered without gaps or overlaps by n unit squares is said to have an area of n units.
- Students will measure area by counting unit squares (square cm , square m , square in, square ft , and improvised units).
- Students will apply the commutative and associative properties as strategies to multiply, exploring the use of parenthesis within the Associative Property.

Students will use multiplication within 100 to solve word problems in product unknown situations involving equal groups, arrays and

What does this mean? What does it look like?

Which rectangle covers the most area?

These rectangles are formed from unit squares (tiles students have used) although students are not informed of this or the 12. Activity from Lehrer, et al., 1998, "Developing understanding

5
one square unit

- The associative property states that the sum or product stays the same when the grouping of addends or factors is changed. For example, when a student multiplies $7 \times 5 \times 2$, a student could rearrange the numbers to first multiply $5 \times 2=10$ and then multiply $10 \times 7=70$.
- The commutative property (order property) states that the order of numbers does not matter when adding or multiplying numbers. For example, if a student knows that $5 \times 4=20$, then they also know that $4 \times 5=20$.
- The array below could be described as a 5×4 array for 5 columns and 4 rows, or a 4×5 array for 4 rows and 5 columns. There is no "fixed" way to write the dimensions of an array as rows x columns or columns x rows.
- Students should have flexibility in being able to describe both dimensions of an array.

$\mathrm{X} \times \times \mathrm{X}$		$\mathrm{X} \times \times \times \mathrm{X}$
X X X X	4×5	X X X X
$\mathrm{X} \times \times \mathrm{X}$	or	X $\times \times \times \mathrm{X}$
$\times \times \times \mathrm{X}$	5×4	X X X X ${ }^{\text {P }}$
X X X X		

Examples of multiplication:

There are 24 desks in the classroom. If the teacher puts 6 desks in each row, how many rows are there? This task can be solved by drawing an

How can I help my child at home?
Using Arrays - Directions to a printable game where students build the array which matches the roll of the dice.

Area Game - An online game to practice finding area using grids
Commutative Property of

Multiplication - This video shows how to use the commutative property of multiplication

Associative Property of
Multiplication Video - This video shows how to use the associative property of multiplication.

Cookie Capers - Online fact acquisition to practice repeated addition and math vocabulary

	- Grade 3 explanations for " $\mathbf{1 5}$ tens is $\mathbf{1 5 0}$ " - Skip-counting by 50.5 tens is $50,100,150$. - Counting on by 5 tens. 5 tens is 50,5 more tens is 100,5 more tens is 150 . - Decomposing 15 tens. 15 tens is 10 tens and 5 tens. 10 tens is 100.5 tens is 50 . So 15 tens is 100 and 50 , or 150. - Decomposing 15 . $\begin{aligned} 15 \times 10 & =(10+5) \times 10 \\ & =(10 \times 10)+(5 \times 10) \\ & =100+50 \\ & =150 \end{aligned}$ All of these explanations are correct. However, skip-counting and counting on become more difficult to use accurately as numbers become larger, e.g., in computing 5×90 or explaining why 45 tens is 450 , and needs modification for products such as 4×90. The first does not indicate any place value understanding.		
Students will apply repeated addition or multiplication strategies to find areas.	Students should solve real world and mathematical problems. Example: Drew wants to tile the bathroom floor using 1 foot tiles. How many square foot tiles will he need?	8 ft	Using Arrays - Directions to a printable game where students build the array which matches the roll of the dice.

